Some Mathematical Questions of the Subduction Processes

Authors

  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
  • Pluzhnik A.V. Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
  • Gorshkova E.M. Kuban State University, Krasnodar, Russian Federation
  • Kovalenko M.M. Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
  • Bushueva O.A. Kuban State University, Krasnodar, Russian Federation
  • Uafa G.N. Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

YMPNRF

DOI:

10.31429/vestnik-18-3-23-32

Abstract

The problem of the occurrence of initial earthquakes in subduction zones is considered. Subduction is the phenomenon of the movement of the oceanic lithospheric plate under the continental one. Under the conditions of subduction, the lithospheric plates experience certain physical changes. For example, an oceanic lithospheric plate at a certain depth melts from below and can slide. The paper considers the occurrence of initial earthquakes under the assumption that the lithospheric plates have different contact conditions, being on a rigid base in the subduction zone. The melted lithospheric plate has no tangential contact stresses, and the other, oceanic, is rigidly connected to the base. It is known that not all earthquakes that occur in the ocean cause tsunami waves. For example, there were cases when a very strong earthquake in the ocean did not generate tsunami waves. At the same time, a sufficiently weak one can cause a tsunami. In the process of subduction, there are changes in the rheological properties of the lithospheric plates themselves, or the broken fragments of plates in the Benioff zone. The block element method is used to investigate the occurrence of the initial earthquake and the peculiarity of its consequences. Currently, new modeling methods have been developed. Behaviors of solutions of boundary value problems for environments of complex rheologies, which are also applicable in real problems. Examples of the use of these features are discussed in the work.

Keywords:

subduction, tsunami, lithospheric plates, block element method, initial earthquake, new modeling methods

Funding information

Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2021 г. Минобрнауки (проект FZEN-2020-0020), ЮНЦ РАН (проект 00-20-13) № госрег. 01201354241, и при поддержке грантов РФФИ (19-41-230003, 19-41-230004, 19-48-230014).

Authors info

  • Olga M. Babeshko

    д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Olga V. Evdokimova

    д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

  • Andrey V. Pluzhnik

    Плужник Андрей Валерьевич, младший научный сотрудник Южного научного центра РАН

  • Elena M. Gorshkova

    канд. физ.-мат. наук, старший научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Maria M. Kovalenko

    младший научный сотрудник Южного научного центра РАН

  • Olga A. Bushueva

    студентка магистратуры факультета компьютерных технологий и математики Кубанского государственного университета

  • Galina N. Uafa

    инженер-исследователь Южного научного центра РАН

References

  1. Beck S.L., Ruff L.J. Great earthquakes and subduction along the Peru Trench // Phys. Earth Planet. Interiors. 1989. Vol. 57. P. 199–224.
  2. Лобковский Л.И., Гарагаш И.А. Математический анализ устойчивости Кавказкого склона Черного моря и развитие оползневых процессов при землетрясениях. В кн.: Комплексные исследования северо-восточной части Черного моря. М.: Научный мир, 2002. С. 843–847. [Lobkovskij L.I., Garagash I.A. Matematicheskiy analiz ustoychivosti Kavkazkogo sklona Chernogo morya i razvitie opolznevykh protsessov pri zemletryaseniyakh [Mathematical analysis of the stability of the Caucasian slope of the Black Sea and the development of landslide processes during earthquakes]. In: Kompleksnye issledovaniya severo-vostochnoy chasti Chernogo morya [Comprehensive studies of the north-eastern part of the Black Sea]. Nauchnyj mir, Moscow, 2002, pp. 843–847. (In Russian)]
  3. Марчук А.Г., Чубаров Л.Б., Шокин Ю.И. Численное моделирование волн цунами. Новосибирск: Наука, 1983. 174 с. [Marchuk, A.G., Chubarov, L.B., Shokin, Ju.I. Chislennoe modelirovanie voln tsunami [Numerical simulation of tsunami waves]. Nauka, Novosibirsk, 1983. (In Russian)]
  4. Соловьев С.Л. Повторяемость землетрясений и цунами в Тихом океане. В сб.: Волны цунами. Труды СахКНИИ. Вып. 29. Южно-Сахалинск, 1972. С. 7–47. [Solov'ev, S.L. Povtoryaemost' zemletryaseniy i tsunami v Tikhom okeane [The frequency of earthquakes and tsunamis in the Pacific Ocean]. In: Volny tsunami. Trudy SakhKNII. Vyp. 29 [Tsunami waves. Proc. of the Sakhknii. Iss. 29]. Yuzhno-Sakhalinsk, 1972, pp. 7–47. (In Russian)]
  5. Соловьев С.Л., Куликов Е.А. О восстановлении параметров очага цунами из спектральных характеристик волн у берега // Известия АН СССР. Физика атмосферы и океана. 1987. Т. 23. № 1. С. 91–98. [Solov'ev, S.L., Kulikov, E.A. O vosstanovlenii parametrov ochaga tsunami iz spektral'nykh kharakteristik voln u berega [On the restoration of the parameters of the tsunami source from the spectral characteristics of waves near the shore]. Izvestiya AN SSSR. Fizika atmosfery i okeana [Izvestia of the USSR Academy of Sciences. Atmospheric and Ocean physics], 1987, vol. 23, no. 1, pp. 91–98. (In Russian)]
  6. Иващенко А.И. О повторяемости сильных цунами в северо-западной части Тихого океана за последние 50 лет. В сб.: Волны цунами. Труды СахКНИИ. Вып. 29. Южно-Сахалинск, 1972. С. 208–216. [Ivashchenko, A.I. O povtoryaemosti sil'nykh tsunami v severo-zapadnoy chasti Tikhogo okeana za poslednie 50 let [On the recurrence of strong tsunamis in the Northwestern Pacific Ocean over the past 50 years]. In: Volny tsunami. Trudy SakhKNII. Vyp. 29 [Tsunami waves. Proc. of the Sakhknii. Iss. 29]. Yuzhno-Sakhalinsk, 1972, pp. 208–216. (In Russian)]
  7. Berninghausen W.H. Tsunamis reported from the west coast of South America 1562-1960 // Bull. Seismol. Soc. Amer. 1962. Vol. 52. Iss. 4. P. 915–921.
  8. Hatori T. Colombia-Peru tsunamis observed along the coast of Japan: Tsunami magnitude and source areas. In: Iida K., Iwasaki T. (eds) Tsunamis Their Science and Engineering. Terra Sci Publ., Tokyo, 1983. P. 173–183.
  9. Imamura F., Hashi K., Imteaz Md.M.A. Modeling for tsunamis genarated by landsliding and debris flow. In: Hebenstreit, G.T. (ed.) Tsunami Research at the End of Critical Decade. Kluwer Acad. Publ., Dordrecht, 2001. P. 209–228.
  10. Jansen E., Befring S., Bugge T., Eidvin T., Holtedahl H., Sejrup H.-P. Large submarine slides on the Norwegian continental margin: Sediments, transport, and timing // Marine Geology. 1987. Vol. 78. P. 77–107.
  11. Karlsrud K., Edgers L. Some aspects of submarine slope stability. In: Marine Slides and Other Mass Movements. Plenum, New York, 1980. P. 61–81.
  12. Mei C.C., Liu K.F. A Bingham-plastic model for a muddy seabed under long waves // J. Geophys. Res. 1987. Vol. 92. P. 14581–14594.
  13. Munk W.H. Long ocean waves. In: The Sea. Ideas and observations on progress in the study of the sea. J. Wiley, New York, 1962. P. 647–663.
  14. Okada Y. Surface deformation due to shear and tensile faults in a half-space // Bull. Seism. Soc. America. 1985. Vol. 75. P. 1135–1154.
  15. Ren P., Bomhold B.D., Prior D.B. Seafloor morphology and sedimentary processes, Knight Inlet, British Columbia // Sedimentary Geology. 1996. Vol. 103. P. 201–228.
  16. Rogers G.C. A documentation of soil failure during the British Columbia earthquake of 23 June, 1946 // Can. Geotech. J. 1980. Vol. 17. P. 122–127.
  17. Silgado E. Recurrence of tsunamis in the western coast of South America // Marine Geodesy. 1978. Vol. 1. Iss. 4. P. 347–354.
  18. Smith R. Asymptotic solutions for high-frequency trapped wave propagation // Philos. Trans. Roy. Soc. London. 1970. Vol. A268. Iss. 189. P. 289–324.
  19. Snodgrass F.E., Munk W.H., Miller G.R. Long period waves over California's continental borderland. Pt. I. Background spectra // J. Mar. Res. 1962. Vol. 20. Iss. 1. P. 3–30.
  20. Weichert D., Horner R.B., Evans S.G. Seismic signatures of landslides: The 1990 Brenda Mine collapse and the 1965 Hope rockslides // Bull. Seism. Soc. America. 1994. Vol. 84. P. 1523–1532.
  21. Babeshko V.A., Evdokimova O.V., Babeshko O.M. About earthquakes in subduction zones with the potential to cause a tsunami// Journai of Appllied and Computational Mechanics. 2021. Vol. 7(SI). P. 1232–1241. DOI: 10.22055/JACM.2020.32385.2007
  22. Бабешко В.А., Бабешко О.М, Евдокимова О.В., Евдокимов В.С., Уафа С.Б. О ресурсах подшипников и о механике субдукционных процессов // Известия РАН. Механика твердого тела. 2020. №3. С. 12–19. DOI: 10.3103/S0025654420030036 [Babeshko, V.A., Babeshko, O.M, Evdokimova, O.V., Evdokimov, V.S., Uafa, S.B. O resursakh podshipnikov i o mekhanike subduktsionnykh protsessov [On bearing resources and on the mechanics of subduction processes]. Izvestiya RAN. Mekhanika tverdogo tela [Izvestiya RAS. Solid State Mechanics], 2020, no. 3, pp. 12–19. DOI: 10.3103/S0025654420030036 (In Russian)]
  23. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об одном методе решения граничных задач динамической теории упругости в четвертьплоскости // ПММ. 2021. Т. 85. № 3. С. 275–282. DOI: 10.31857/S0032823521030024 [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Ob odnom metode resheniya granichnykh zadach dinamicheskoy teorii uprugosti v chetvert'ploskosti [On a method for solving boundary value problems of the dynamic theory of elasticity in a quarter plane]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 2021, vol. 85, no. 3, pp. 275–282. DOI: 10.31857/S0032823521030024 (In Russian)]
  24. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Блочные элементы в граничных задачах для систем дифференциальных уравнений механики и физики в неклассических областях // ДАН. 2021. Т. 498. С. 33–39. DOI: 10.31857/S2686740021030032 [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Blochnye elementy v granichnykh zadachakh dlya sistem differentsial'nykh uravneniy mekhaniki i fiziki v neklassicheskikh oblastyakh [Block elements in boundary value problems for systems of differential equations of mechanics and physics in non-classical fields] Doklady Akademii nauk [Rep. of the Academy of Sciences], 2021, vol. 498, pp. 33–39. DOI: 10.31857/S2686740021030032 (In Russian)]
  25. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования // ДАН. 2021. Т. 499. С. 30–35. DOI: 10.31857/S2686740021040039 [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Fraktal'nye svoystva blochnykh elementov i novyy universal'nyy metod modelirovaniya [Fractal properties of block elements and a new universal modeling method]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2021, vol. 499, pp. 30–35. DOI: 10.31857/S2686740021040039 (In Russian)]
  26. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в разложении решений сложных граничных задач механики // ДАН. 2020. Т. 495. С. 34–38. DOI: 10.31857/S2686740020060048 [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Metod blochnogo elementa v razlozhenii resheniy slozhnykh granichnykh zadach mekhaniki [The block element method in the decomposition of solutions to complex boundary value problems of mechanics]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2020, vol. 495, pp. 34–38. DOI: 10.31857/S2686740020060048 (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

23-32

Section

Mechanics

Dates

Submitted

September 19, 2021

Accepted

September 22, 2021

Published

September 30, 2021

How to Cite

[1]
Babeshko, O.M., Evdokimova, O.V., Pluzhnik, A.V., Gorshkova, E.M., Kovalenko, M.M., Bushueva, O.A., Uafa, G.N., Some Mathematical Questions of the Subduction Processes. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, т. 18, № 3, pp. 23–32. DOI: 10.31429/vestnik-18-3-23-32

Similar Articles

1-10 of 522

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>