On an approach to solving the problem of thermoelasticity for a coating-substrate system with delamination

Authors

  • Vatulyan A.O. South Federal University, Rostov-on-Don, Российская Федерация
  • Nesterov S.A. South Mathematical Institute - branch of Vladikavkazskiy Scientific Centre of RAS, Vladikavkaz, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-17-2-18-28

Abstract

The equilibrium of the "heat-protective coating-substrate" system with an interface crack under the influence of a heat load localized at the upper boundary of the coating is considered. The coating-substrate system is modeled as a non-uniform band. The crack is modeled as a mathematical section, the banks of which are heat-insulated and stress-free; this leads to temperature and displacements jumps. The task is to find temperature jumps and displacements (opening functions) on the banks of the crack. Knowing the opening functions, you can calculate the stress-strain state at any point in the band. At the first stage, the problem of stationary thermal conductivity with a crack is solved. The solution is based on a combination of the Fourier transform and the targeting method. A hypersingular integral equation is obtained with respect to the temperature jump function on the separation. At the second stage, the problem of unbound thermoelasticity is solved. A system of hypersingular integral equations with respect to disclosure functions is obtained. The solution of integral equations is based on the collocation method, taking into account the behavior of transfer functions. The case of continuous change of material characteristics across the boundary of the "coating-substrate" section is considered. It was found that the value of the temperature jump is proportional to the amplitude of the heat flow; the temperature jump increases as the coating thickness decreases. In the case of a load that is located symmetrically relative to the center of separation, the temperature jump function and the opening function also have symmetry.

Keywords:

heat-protective coating, strip, interface crack, functionally graded materials, hypersingular integral equations, Fourier transform, targeting method

Acknowledgement

Работа выполнена при поддержке гранта РНФ (18-11-00069).

Author Infos

Aleksandr O. Vatulyan

д-р физ.-мат. наук, профессор, заведующий кафедрой теории упругости Института математики, механики и компьютерных наук им. И.И. Воровича Южного федерального университета

e-mail: vatulyan@math.rsu.ru

Sergey A. Nesterov

канд. физ.-мат. наук, старший науч. сотр. отдела дифференциальных уравнений Южного математического института - филиала Владикавказского научного центра РАН

e-mail: 1079@list.ru

References

  1. Padture N.R., Gell M., Jordan E.H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, vol. 296, pp. 280–284.
  2. Bialas M. Finite Element Analysis of stress distribution in thermal barrier coatings. J. Surf. Coat. Tech., 2008, vol. 202, pp. 6002–6010.
  3. Lee W.Y., Stinton D.P., Bernardt C.C., Erdogan F., Lee Y.D., Mutasin Z. Concept of functionally graded materials for advanced thermal barrier coatings applications. J. Amer. Ceram. Soc., 1996, vol. 19, iss. 3, pp. 3003–3012.
  4. Lee Y-D., Erdogan F. Residual/thermal stresses in FGM and laminated thermal barrier coatings. Int J Fract, 1995, vol. 69, pp. 145–165.
  5. Raddy J.N., Chin C.D. Thermoelastic analysis of functionally graded cylinders and plates. J. Thermal Stresses, 1998, vol. 21, pp. 593–626.
  6. England A.H. A crack between dissimilar media. J. Appl. Mech., 1965, vol. 32, pp. 400–402.
  7. Comninou M. The interface crack. J. Appl. Mech., 1977, vol. 44, pp. 631–636.
  8. Suo Z., Hutchinson J.W. Interface Crack Between Two Elastic Layers. Int. J. Fracture, 1990, vol. 43, pp. 1–18.
  9. Noda N., Jin Z.H. Steady thermal stress in an infinite nonhomogeneous elastic solid containing a crack. J. Therm. Stress, 1993, vol. 16, pp. 181–196.
  10. Lee K.Y., Park S.J. Thermal stress intensity factors for partially insulated interface crack under uniform heat flow. Eng. Fract. Mech, 1995, vol. 50, pp. 475–482.
  11. Erdogan F, Wu B.H. Crack problems in FGM layers under thermal stresses. J Thermal Stress. 1996, vol. 19, pp. 237–265.
  12. Bao G., Cai H. Delamination cracking in functionally graded coating/metal substrate systems. Acta Mater., 1997, vol. 45, pp. 1055–1066.
  13. Choi S.R., Hutchinson J.W., Evans A.G. Delamination of multilayer thermal barrier coatings. Mechanics of materials, 1999, vol. 31, pp. 431–447.
  14. Gol'dshtejn R.V., Osipenko N.M. Otsloenie pokrytij pod dejstviem temperaturnyh naprjazhenij (balochnoe priblizhenie) [Detachment of coatings under the influence of temperature stresses (beam approximation)]. \emph{Vestnik SamGU. Estestvenno-nauchnaja serija [Bulletin of Samara State University. Natural Science Series], 2007, no. 4, pp. 66–83. (In Russian)
  15. Vatul'yan A.O., Morozov K.L. \quad Ob otsloyenii pokrytiya, lezhashchego na uprugom osnovanii [Delamination of a Coating Lying on an Elastic Base]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2020, no. 1, pp. 133–143. (In Russian)
  16. Vatul'yan A.O., Morozov K.L. Ob issledovanii otsloyeniya ot uprugogo osnovaniya na osnove modeli s dvumya koeffitsiyentami posteli [On the study of separation from an elastic base based on a model with two coefficients]. Izvestiya RAN. Mekhanika tverdogo tela [Bulletin of the Russian Academy of Sciences. Solid mechanics], 2020, no. 2, pp. 64–76. (In Russian)
  17. EI-Borgi S., Erdogan F., Hatira F.B. Stresses intensity factors for an interface crack between a functionally graded coating and a homogeneous substrate. Int. J. Fract. 2003, vol. 123, pp. 139–162.
  18. Veljkovic J.M., Nikolic R.R. Application of the interface crack concept to the problem of a crack between a thin layer and a substrate. Facta Universitates, 2003, vol. 3, pp. 573–581.
  19. Petrova V., Herrmann K. Thermal crack problems for a bimaterial with an interface crack and internal defects. Int. J. Fract., 2004, vol. 128, pp. 49–63.
  20. Chen J. Determination of thermal stress intensity factors for an interface crack in a graded orthotropic coating-substrate structure. Int. J. Fract., 2005, vol. 133, pp. 303–328.
  21. Djokovic J.M., Nikolic R.R., Tadic S.S. Influence of temperature on behavior of the interfacial crack between the two layers. Thermal Science, 2010, vol. 14, pp. 259–268.
  22. Sheng-Hu Ding, Xing Li. Thermal stress intensity factors for an interface crack in a functionally graded layered structures. Arch Appl Mech., 2011, vol. 81, pp. 943–955.
  23. Ding S.H., Zhou Y.T., Xing L. Interface crack problem in layered orthotropic materials under thermo-mechanical loading. Int J Solids Struc., 2014, vol. 51, pp. 25–26.
  24. Lee G.H., Beom H.G. Interfacial edge crack between dissimilar orthotropic thermoelastic materials under uniform heat flow. J. Mech. Sci. Technol., 2014, vol. 28(8), pp. 3041–3050.
  25. Wang Xu. , Zhou K., Wu M.S. Interface cracks with surface elasticity in anisotropic biomaterials. Int J Solids Struc., 2015, vol. 59, pp. 110–120.
  26. Wang J., Ming D., Cun-Fa G. The effect of interfacial thermal resistance on interface crack subjected to remote heat flux. Z. Angew. Math. Phys., 2020, vol. 71(12), pp. 1–21.
  27. Vatulyan A.O., Plotnikov D.K. Modelirovaniye otsloyeniy v sloistykh strukturakh [Modeling of delaminations in layered structures]. Aktual'nyye problemy mekhaniki sploshnykh sred: Trudy XV Mezhdunar. konf. [Actual problems of continuum mechanics: Proceedings of the XV Intern. conf.]. Yerevan, Publishing House of the Institute of Mechanics of NAS RA, 2019, pp. 94–98. (In Russian)

Issue

Section

Mechanics

Pages

18-28

Submitted

2020-04-24

Published

2020-06-27

How to Cite

Vatulyan A.O., Nesterov S.A. On an approach to solving the problem of thermoelasticity for a coating-substrate system with delamination. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 2, pp. 18-28. DOI: https://doi.org/10.31429/vestnik-17-2-18-28 (In Russian)