On the Study of Vibrations of an Extended Base in the Presence of a Depth Liquid Layer
UDC
539.422.3DOI:
https://doi.org/10.31429/vestnik-19-2-39-46Abstract
In mathematical modeling of geophysical fields in a real environment, a package of layers is often used as a model of the latter, since the primary occurrence of layers and formations is usually horizontal. In order to predict and prevent geophysical, as well as related technical disasters in the face of increasing technogenic environmental loads, there is an acute issue of developing models of physical and mechanical processes in geomaterials. The need to increase the probability of prognostic estimates for the occurrence of catastrophic situations requires more precise calculations concerning the dynamic behavior of extended objects with complex structure and physical and mechanical properties. In the paper we consider the plane problem of vibration for a half-space with coating, modeled by an elastic layer, in the presence of a liquid layer between them. The amplitude values of the displacements for elastic media are described by the steady-state Lame equations, the liquid velocity potential satisfies the Helmholtz equation. Solutions of boundary value problems describing the behavior of a hydroelastic layered medium are built on the basis of an integral approach. The heterogeneity of the foundation structure necessitates the decomposition of the model. We obtain the integral characteristics of normal pressures at the boundaries of the liquid layer by solving the problems for each of the three media, taking into account the layer conjugation conditions. The results of model calculations for normal pressures in the media interface are presented. The considered model can be used in studying the features of the interaction between vibration sources and the geophysical environment, modeled by a multilayer foundation containing liquid interlayers.
Keywords:
vibration effect, geomaterial models, extended foundation, coating, liquid layer, steady-state oscillationsAcknowledgement
References
- Николаев, А.В. Вибрационное просвечивание – метод исследования Земли. Проблемы вибрационного просвечивания. Наука, Москва, 1977. [Nikolaev, A.V. Vibratsionnoe prosvechivanie – metod issledovaniya Zemli. Problemy vibratsionnogo prosvechivaniya = Vibrational transillumination is a method of studying the Earth. Problems of vibration transillumination. Nauka, Moscow, 1977. (In Russian)]
- Алексеев, А.С. Современные обратные задачи геофизики в пробеме многодисциплинарного прогноза землетрясений. В: Развитие методов и средств экспериментальной геофизики: сборник научных трудов. Вып. 1. ИФЗ РАН, Москва, 1993. С. 9–24. [Alekseev, A.S. Modern inverse problems of geophysics in the problem of multidisciplinary earthquake prediction. In: Razvitie metodov i sredstv eksperimental'noy geofiziki = Development of methods and means of experimental geophysics: collection of scientific papers. Iss. 1. IPE RAS, Moscow, 1993, pp. 9–24. (In Russian)]
- Barabanov, V.L., Nikolaev, A.V., Sobisevich, A.L. et. al. On effects of vibrations on water-saturated media. In: Seismicity and related processes in the environment, vol. 1, Research and Coordinating Centre for Seismology and Engineering, Russ. Acad. Sci., Moscow, 1994, pp. 75–77.
- Ляпин, A.A., Селезнев, М.Г., Собисевич, Л.Е., Собисевич, А.Л. Механико-математические модели в задачах активной сейсмологии. ГНТП "Глобальные изменения природной среды и климата". М.: ГНИЦ 111 К (МФ) Минобразования России, 1999. [Lyapin, A.A., Seleznev, M.G., Sobisevich, L.E., Sobisevich, A.L. Mekhaniko-matematicheskie modeli v zadachakh aktivnoy seysmologii = Mechanical and mathematical models in problems of active seismology. SSTP "Global environmental and climate change". GNITs 111 K (MF) of the Ministry of Education of Russia, Moscow, 1999. (In Russian)]
- Бабешко, В.А., Глушков, Е.В., Зинченко, Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. [Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F. Dinamika neodnorodnykh lineyno-uprugikh sred = Dynamics of inhomogeneous linear elastic media. Nauka, Moscow, 1989. (In Russian)]
- Alterman, Z., Karal, F. Propagation of elastic waves in layered media by finite differences methods. Bull. Seism. Soc. Amer., 1958, vol. 58, iss. 1, pp. 367–398.
- Dunkin, J.W. Computations of modal solutions in layered elastic media at high frequencies. Bull. Seism. Soc. Amer., 1965, vol. 55, iss. 2, pp. 335–358.
- Сеймов, В.М., Трофимчук, А.Н., Савицкий, О.А. Колебания и волны в слоистых средах. Наукова думка, Киев, 1990. [Seimov, V.M., Trofimchuk, A.N., Savitsky, O.A. Kolebaniya i volny v sloistykh sredakh = Oscillations and waves in layered media. Naukova Dumka, Kyiv, 1990. (In Russian)]
- Усошина, Е.А., Суворова, Т.В., Соловьев, А.Н. Математические модели динамических систем, включающих слоистые обводненные пористоупругие основания. Вестник Донского государственного технического университета, 2016, № 3, с. 10–16. [Usoshina, E.A., Suvorova, T.V., Soloviev, A.N. Mathematical models of dynamic systems, including layered watered porous elastic foundations. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Don State Technical University, 2016, no. 3, pp. 10–16. (In Russian)]
- Нижник, М.П., Павлова, А.В., Рубцов, С.Е. К решению одной задачи для упругого полупространства с жидким включением. Экологический вестник научных центров Черноморского экономического сотрудничества, 2006, № 2, с. 40–43. [Nizhnik, M.P., Pavlova, A.V., Rubtsov, S.E. On the solution of a problem for an elastic half-space with a liquid inclusion. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2006, No. 2, pp. 40–43. (In Russian)]
- Работнов, Ю.Н. Механика деформируемого твёрдого тела. Наука, Москва, 1979. [Rabotnov Yu.N. Mekhanika deformiruemogo tverdogo tela = Mechanics of a Deformable Solid Body. Nauka, Moscow, 1979. (In Russian)]
- Лаврентьев, М.А., Шабат, Б.В. Методы теории функций комплексного переменного. Наука, Москва, 1973. [Lavrentiev, M.A., Shabat, B.V. Metody teorii funktsiy kompleksnogo peremennogo = Methods of the theory of functions of a complex variable. Nauka, Moscow, 1973. (In Russian)]
Downloads
Submitted
Published
How to Cite
Copyright (c) 2022 Rubtsov S.E., Pavlova A.V., Telyatnikov I.S.
This work is licensed under a Creative Commons Attribution 4.0 International License.