Об упакованных векторных блочных элементах граничных задач
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-17-2-14-17Аннотация
В работе приводится пример построенного упакованного векторного блочного элемента для граничных задач, описываемых системой дифференциальных уравнений в частных производных с постоянными коэффициентами в классической области. Разработанный метод построения упакованных, как скалярных, так и векторных блочных элементов применим для решения граничных задач не только в квадрантах, но и в таких областях, как прямоугольник, прямоугольный параллелепипед, цилиндры с прямоугольными и остроугольными сечениями. Ранее это не удавалось реализовывать. Переменность параметров дифференциальных уравнений рассматриваемой среды достигается введением сеток с размерами, в которых коэффициенты дифференциальных уравнений можно считать постоянным. Объединение блочных элементов получается путем построения соответствующих фактор-топологий векторных топологических пространств. С помощью этого подхода оказывается возможным проектирование материалов с переменными свойствами, изучение волновых процессов в неоднородных средах, исследование поведения конструкций блочного строения с неоднородными блоками.
Ключевые слова:
граничные задачи, упакованные векторные и скалярные блочные элементы, уравнения ЛамеИнформация о финансировании
Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки России на 2020 г. (проект FZEN-2020-0022), Южного научного центра РАН на 2020 г. (проект 00-20-13) № госрег. 01201354241, и при поддержке грантов Российского фонда фундаментальных исследований (проекты 19-41-230003, 19-41-230004, 19-48-230014, 18-08-00465, 18-01-00384, 18-05-80008).
Библиографические ссылки
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Применение метода блочного элемента в одной граничной задаче академика И.И.Воровича // ДАН. 2020. Т. 494. № 4. С. 427–431. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Primenenie metoda blochnogo elementa v odnoy granichnoy zadache akademika I.I. Vorovicha [Application of the block element method in one boundary problem of academician I.I. Vorovich]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2020, vol. 494, no. 4, pp. 427–431. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О стадиях преобразования блочных элементов // ДАН. 2016. Т. 468. № 2. С. 154–158. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. O stadiyakh preobrazovaniya blochnykh elementov [About the stages of transforming block elements]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2016, vol. 468, no. 2, pp. 154–158. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М., Рядчиков И.В. Метод проектирования неоднородных материалов и блочных конструкций // ДАН. 2018. Т. 482. № 4. С. 398–402. DOI: 10.1134/S1028335818100014 [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Ryadchikov, I.V. Metod proektirovaniya neodnorodnykh materialov i blochnykh konstruktsiy [The method of designing heterogeneous materials and block structures]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2018, vol. 482, no. 4, pp. 398–402. DOI: 10.1134/S1028335818100014 (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О стартовых землетрясениях при горизонтальных воздействиях // ДАН. 2017. Т. 474. № 4. С. 427–431. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. O startovykh zemletryaseniyakh pri gorizontal'nykh vozdeystviyakh [On starting earthquakes with horizontal impacts]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2017, vol. 474, no. 4, pp. 427–431. (In Russian)]
- Бабешко В.А., Бабешко О.М., Евдокимова О.В. Об интегральном и дифференциальном методах факторизации // ДАН. 2006. Т. 410. № 2. С. 168–172. [Babeshko, V.A., Babeshko, O.M., Evdokimova, O.V. Ob integral'nom i differentsial'nom metodakh faktorizatsii [Integral and differential factorization methods]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2006, vol. 410, no. 2, pp. 168–172. (In Russian)]
- Александров В.М., Копасенко В.В. Контактная задача для упругого клина с жестко защемленной гранью // Прикладная механика. 1968. Т. 4, № 7. С. 75–82. [Aleksandrov, V.M., Kopasenko, V.V. Kontaktnaya zadacha dlya uprugogo klina s zhestko zashchemlennoy gran'yu [Contact problem for an elastic wedge with a rigidly clamped face]. Prikladnaya mekhanika [Applied Mechanics], 1968, vol. 4, no. 7, pp. 75–82. (In Russian)]
- Бабич В.М. О коротковолновой асимптотике функции Грина для уравнения Гельмгольца // Математический сборник. 1964. Т. 65. С. 577–630. [Babich, V.M. O korotkovolnovoy asimptotike funktsii Grina dlya uravneniya Gel'mgol'tsa [On the short-wave asymptotics of the Green's function for the Helmholtz equation]. Matematicheskiy sbornik [Mathematical collection], 1964, vol. 65, pp. 577–630. (In Russian)]
- Бабич В.М., Булдырев В.С. Асимптотические методы в проблеме дифракции коротких волн. М.: Наука, 1972. 256 с. [Babich, V.M., Buldyrev, V.S. Asimptoticheskie metody v probleme difraktsii korotkikh voln [Asymptotic methods in the problem of short-wave diffraction]. Nauka, Moscow, 1972. (In Russian)]
- Мухина И.В. Приближенное сведение к уравнениям Гельмгольца уравнений теории упругости и электродинамики для неоднородных сред // ПММ. 1972. Т. 36. С. 667–671. [Mukhina, I.V. Priblizhennoe svedenie k uravneniyam Gel'mgol'tsa uravneniy teorii uprugosti i elektrodinamiki dlya neodnorodnykh sred [Approximate reduction to the Helmholtz equations of the equations of the theory of elasticity and electrodynamics for inhomogeneous media]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1972, vol. 36, pp. 667–671. (In Russian)]
- Молотков Л.А. Исследование распространения волн в пористых и трещиноватых средах на основе эффективных моделей Био и слоистых сред. С.-Пб.: Наука, 2001. 348 с. [Molotkov, L.A. Issledovanie rasprostraneniya voln v poristykh i treshchinovatykh sredakh na osnove effektivnykh modeley Bio i sloistykh sred [The study of wave propagation in porous and fractured media based on effective models of Bio and layered media]. Nauka, S.-Pb., 2001. (In Russian)]
- Новацкий В. Теория упругости. М.: Мир, 1975. 872 с. [Novatskiy, V. Teoriya uprugosti [Elasticity theory]. Mir, Moscow, 1975. (In Russian)]
- Новацкий В. Электромагнитные эффекты в твердых телах. М.: Мир, 1986. 160 с. [Novatskiy, V. Elektromagnitnye effekty v tverdykh telakh [Electromagnetic effects in solids]. Mir, Mpscow, 1986. (In Russian)]
- Улитко А.Ф. Метод собственных векторных функций в пространственных задачах теории упругости. Киев: Наукова Думка, 1979. 262 с. [Ulitko, A.F. Metod sobstvennykh vektornykh funktsiy v prostranstvennykh zadachakh teorii uprugosti [The method of eigenvector functions in spatial problems of the theory of elasticity]. Naukova Dumka, Kiev, 1979. (In Russian)]
- Гринченко В.Т., Мелешко В.В. Гармонические колебания и волны в упругих телах. Киев: Наукова Думка, 1981. 284 с. [Grinchenko, V.T., Meleshko, V.V. Garmonicheskie kolebaniya i volny v uprugikh telakh [Harmonic vibrations and waves in elastic bodies]. Naukova Dumka, Kiev, 1981. (In Russian)]
Скачивания

Загрузки
Даты
Поступила в редакцию
Принята к публикации
Публикация
Как цитировать
Лицензия
Copyright (c) 2020 Бабешко О.М., Бабешко В.А., Евдокимова О.В.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.