On some applications of liquid coatings
UDC
539.3EDN
LXFPUYDOI:
10.31429/vestnik-16-3-40-45Abstract
The block element method is used to investigate the behavior of the coated material under the assumption that the surface is exposed to an active liquid medium capable of destroying the coating, including in the process of subduction, tsunami preparation, landslide processes. It is assumed that the destruction begins with the formation of vertical local cracks in the coating, which then grow and lead to the exposure of the unprotected surface. Assuming the possibility of modeling a liquid layer by shallow water equations, we investigate a block structure that includes a body in the form of a deformable layer, a defective coating modeled by Kirchhoff plates and a heavy liquid layer. The distribution of the stress concentration in such a block structure is studied and the conditions both allowing the further use of such an object and excluding this possibility are revealed.
Keywords:
block element, lithospheric plates, topology, exterior forms, block structures, boundary problems, cracks, subduction, tsunami, landslidesFunding information
Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки на 2019 г. (проекты 9.8753.2017/8.9), ЮНЦ РАН на 2019 г. (проект 00-18-04) № госрег. 01201354241, программ президиума РАН №7 (проект 00-18-21) и I-52 (проект 00-18-29), и при поддержке РФФИ (проекты 19-41-230003, 19-41-230004, 19-48-230014, 17-08-00323, 18-08-00465, 18-01-00384, 18-05-80008).
References
- Sinclair G.B. Stress singularities in classical elasticity I // Appl. Mechanics Reviews. 2004. Vol. 57. P. 251–298. DOI: 10.1115/1.1762503
- Sinclair G.B. Stress singularities in classical elasticity II // Appl. Mechanics Reviews. 2004. Vol. 57. P. 385-439. DOI: 10.1115/1.1767846
- Sator C., Becker W. Closed-form solutions for stress singularities at plane bi- and trimaterial junctions // Arch. Appl. Mech. 2012. Vol. 82. P. 643–658. DOI: 10.1007/s00419-011-0580-6
- Kirugulige M.S., Tippur H.V. Mixed-mode dynamic crack growth in a functionally graded particulate composite: experimental measurement and finite element simulations // J. Appl Mech. 2008. Vol. 75. Iss. 5. P. 051102.
- Zhang G., Le Q., Loghin A., Subramaniyan A., Bobaru F. Validation of a peridynamic model for fatigue cracking // Engineering Fracture Mechanics. 2016. Vol. 162. P. 76–94. DOI: 10.1016/j.engfracmech.2016.05.008
- Rangarajan R., Lew A.J. Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes // Int. J. Numer. Meth. Engng. 2014. Vol. 98. Iss. 4. P. 236–264.
- Perelmuter M. Boundary element analysis of structures with bridged interfacial cracks // Comput. Mechanics. 2013. Vol. 51. Iss. 4. P. 523–534.
- Морозов Н.Ф. Математические вопросы теории трещин. М.: Наука, 1984. 256 с. [Morozov, N.F. Matematicheskie voprosy teorii treshchin [Mathematical issues in crack theory]. Nauka, Moscow, 1984. (In Russian)]
- Agrawal A., Karlsson A.V. Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique // Int. J. Fract. 2006. Vol. 141. P. 75–98.
- Beuth J.L. Separation of crack extension modes in orthotropic delamination models // Int J Fract. 1996. Vol. 77. P. 305–321.
- Bjerkén C., Persson C. A numerical method for calculating stress intensity factors for interface cracks in bimaterials // Eng. Fract. Mech. 2001. Vol. 68. P. 235–246. DOI: 10.1016/S0013-7944(00)00098-9
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. Hidden defects in nanostructures, covering bodies, and seismology // Doklady Physics. 2014. Vol. 59. No. 7. P. 313–317.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М., Уафа Г.Н., Евдокимов В.С. О стартовых землетрясениях при параллельных разломах литосферных плит // Известия Саратовского универсиета. Серия: Математика. механика. Физика. 2018. Т. 18. Вып. 4. С. 370–380. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Uafa, G.N., Evdokimov V.S. O startovykh zemletryaseniyakh pri parallel'nykh razlomakh litosfernykh plit [On starting earthquakes during parallel faults of lithospheric plates]. Izvestiya Saratovskogo universieta. Seriya: Matematika. mekhanika. Fizika [Bulletin of the Saratov University. Series: Mathematics. Mechanics. Physics], 2018, vol. 18, iss. 4, pp. 370–380. (In Russian)]
- Стокер Дж.Дж. Волны на воде. Математическая теория и приложения. М., Иностранная литература, 1957. 596 с. [Stoker, Dzh.Dzh. Volny na vode. Matematicheskaya teoriya i prilozheniya [Waves on water. Mathematical Theory and Applications]. Inostrannaya literatura, Moscow, 1957. (In Russian)]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с. [Vorovich, I.I., Babeshko, V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey [Dynamic mixed problems of elasticity theory for non-classical domains]. Nauka, Moscow, 1979. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2019 Евдокимова О.В., Бабешко В.А., Бабешко О.М., Уафа С.Б., Коваленко М.М., Бушуева О.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.