On vector block elements in mechanics problems

Authors

  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Yevdokimov V.S. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Fedorenko A.G. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Eletskiy Yu.B. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-16-3-23-27

Abstract

A plane dynamic problem of the second kind for the Lame equation is considered in the first quadrant. For the first time the exact solution of this boundary value problem in the form of a Packed vector block element is constructed by the block element method. A system of Two lame differential equations is considered in the boundary value problem. To solve it by the block element method, operations of external algebra, external analysis are performed and a vector block element consisting of two components is constructed. For its construction there is a problem of differential factorization of a matrix-function of the second order-coefficient of the functional equation necessary for the correct construction of pseudo-differential equations. Their solution allows you to build components of the external form and the packaged block element itself. The solution of the considered boundary value problem is of interest because it serves the purpose of substantiating the existence and investigation of the properties of cracks of a new type, where previously the antiplane problem was used for these purposes. Also, the solution of the problem is important in the development of methods for designing materials based on block elements, in the analysis of landslides, in the problems of seismology in the analysis preparation of crustal earthquakes.

Keywords:

vector packed block element, topology, integral and differential factorization methods, exterior forms, block structures, boundary problems, bodies with coverings, design of materials

Acknowledgement

Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки на 2019 г. (проекты 9.8753.2017/8.9), ЮНЦ РАН на 2019 г. (проект 00-18-04) № госрег. 01201354241, программ президиума РАН №7 (проект 00-18-21) и I-52 (проект 00-18-29), и при поддержке РФФИ (проекты 19-41-230003, 19-41-230004, 19-48-230014, 17-08-00323, 18-08-00465, 18-01-00384, 18-05-80008).

Author Infos

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета, заведующий лабораторией Южного федерального университета

e-mail: babeshko41@mail.ru

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

e-mail: evdokimova.olga@mail.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Vladimir S. Yevdokimov

студент Кубанского государственного университета, лаборант Южного научного центра РАН

e-mail: evdok_vova@mail.ru

Aleksey G. Fedorenko

канд. физ.-мат. наук, младший научный сотрудник Южного научного центра РАН

e-mail: afedorenko@mail.ru

Yuri B. Eletskiy

заведующий лабораторией Южного научного центра РАН

e-mail: elezkiy@priazovneft.ru

References

  1. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. On a mechanical approach to the prediction of earthquakes during horizontal motion of litospheric plates. Acta Mechanica, 2018, vol. 10, iss. 11,pp. 4727–4739. DOI: 10.1007/s00707-018-2255-7
  2. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. O vliyanii prostranstvennoy modeli litosfernykh plit na startovoe zemletryasenie [On the influence of the spatial model of lithospheric plates on the starting earthquake]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2018, vol. 480, no 2, pp. 158–163. (In Russian)
  3. Muskhelishvili, N.I. Sistemy integral'nykh uravneniy [Systems of integral equations]. Fizmatlit, Moscow, 1962. (In Russian)
  4. Novatskiy, V. Teoriya uprugosti [Elasticity theory]. Mir, Moscow, 1975. (In Russian)
  5. Sneddon, I. Preobrazovaniya Fur'e [Fourier transforms]. Izdatelstvo inostrannoy literatury, Moscow, 1955. (In Russian)
  6. Cherepanov, G.P. Mekhanika khrupkogo razrusheniya [A mechanics of brittle fracture]. Nauka, Moscow, 1974. (In Russian)
  7. Kupradze, V.D. Metody potentsiala v teorii uprugosti [Potential methods in elasticity theory]. Nauka, Moscow, 1963. (In Russian)
  8. Eskin, G.I. Kraevye zadachi dlya ellipticheskikh psevdodifferentsial'nykh uravneniy [Boundary value problems for elliptic pseudo-differential equations]. Nauka, Moscow, 1973. (In Russian)

Issue

Section

Mechanics

Pages

23-27

Submitted

2019-08-17

Published

2019-09-30

How to Cite

Babeshko V.A., Evdokimova O.V., Babeshko O.M., Yevdokimov V.S., Fedorenko A.G., Eletskiy Yu.B. On vector block elements in mechanics problems. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 3, pp. 23-27. DOI: https://doi.org/10.31429/vestnik-16-3-23-27 (In Russian)