To the problem of global models construction

Authors

  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Kuban State University, Krasnodar, Russian Federation
  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Ivanov P.B. State Administration of the Ministry of Emergency Measures for the Krasnodar Territory on antiterrorist activity, Krasnodar, Russian Federation
  • Shestopalov V.L. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Shishkin A.A. Kuban State University, Krasnodar, Russian Federation
  • Pluzhnik A.V. Kuban State University, Krasnodar, Russian Federation
  • Mukhin A.S. Kuban State University, Krasnodar, Russian Federation

UDC

532.517

Abstract

This work describes the usage of automorphism for the sphere presenting a combination of classic spheres. This way one may describe complex space configurations which simulate quite precisely the spheres occupied, for example, by planets, their lithosphere plates and not always of a classical character. The example of constructing block element for such sphere is given in the work.

Keywords:

block element method, boundary value problem, automorphism, pseudo differential equation, complicated dampen

Funding information

Отдельные фрагменты работы выполнены при поддержке грантов РФФИ (11-08-00381) программы Юг России, проекты (11-08-96502), (11-08-96503), (11-08-96506), (11-08-96504), (11-08-96522), (11-08-96505), проекта НШ-914.2012.1, проекта ФЦП 2009-1.5-503-004-006, программ отделения ЭММПУ и Президиума РАН, выполняемых Южным научным центром РАН, государственного контракта от 1 сентября 2010 г. № 16.740.11.0135 в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013.

Author info

  • Vladimir A. Babeshko

    академик РАН, д-р физ.-мат. наук, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Olga V. Evdokimova

    д-р физ.-мат. наук, главный научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Olga M. Babeshko

    д-р физ.-мат. наук, главный научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Pavel B. Ivanov

    заместитель начальника ГУ МЧС по Краснодарскому краю

  • Valeriy L. Shestopalov

    канд. техн. наук, заведующий лабораторией Южного научного центра РАН

  • Aleksey A. Shishkin

    аспирант кафедры математического моделирования Кубанского государственного университета

  • Andrey V. Pluzhnik

    младший научный сотрудник Южного научного центра РАН

  • Aleksey S. Mukhin

    старший научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

References

  1. Бабешко В.А., Бабешко О.М. Интегральные преобразования и метод факторизации в краевых задачах // ДАН. 2005. Т. 403. №.6. C. 26-28.
  2. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О квантовомеханических свойствах блочных элементов в наноматериалах // ДАН. 2010. Т. 435. №2. С. 190-194.
  3. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об особенностях метода блочного элемента в нестационарных задачах // (В печати, ДАН).
  4. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О блочных элементах в слоистых средах с рельефной границей // ДАН. 2010. Т. 435. №1. С. 29-34.
  5. Бабешко В.А., Ритцер А. Об особенностях метода блочного элемента // (В печати, ДАН).
  6. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об автоморфизме и псевдодифференциальных уравнениях в методе блочного элемента // ДАН. 2011. Т. 438. №5. С. 623-625.
  7. Бабешко В.А., Бабешко О.М., Евдокимова О.В. Выполнение граничных условий в дифференциальном методе факторизации // ДАН. 2007. Т. 412. №5. С. 600-603.
  8. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с.
  9. Нобл Б. Метод Винера-Хопфа. М.: Иностранная литература, 1962. 280 с.
  10. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Дифференциальный метод факторизации в блочных структурах и нано структурах // ДАН. 2007. Т. 415, №5. С. 596-599.
  11. Бабешко В.А., Бабешко О.М. Метод факторизации решения некоторых краевых задач // ДАН. 2003. Т. 389. №2. С. 184-188.
  12. Бабешко В.А., Бабешко О.М. Формулы факторизации некоторых мероморфных матриц-функций // ДАН. 2004. Т. 399. №1. С. 163-167.
  13. Евдокимова О.В. О факторизации матриц-функций, возникающих в проблеме прочности материалов сложного строения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2007. №2. С. 8-11.
  14. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Блочные элементы со сферической границей // ДАН. 2010. Т. 434. №5. С. 616-619.

Downloads

Issue

Pages

20-24

Section

Article

Dates

Submitted

February 10, 2012

Accepted

February 23, 2012

Published

March 30, 2012

How to Cite

[1]
Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Ivanov, P.B., Shestopalov, V.L., Shishkin, A.A., Pluzhnik, A.V., Mukhin, A.S., To the problem of global models construction. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2012, № 1, pp. 20–24.

Similar Articles

1-10 of 407

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>