Hidden defects in coverings for harmonic and static actions and rigid contact with base

Authors

  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Khripkov D.A. Kuban State University, Krasnodar, Russian Federation
  • Gorshkova E.M. Kuban State University, Krasnodar, Russian Federation
  • Mukhin A.S. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

Abstract

In earlier works of the authors related to the investigation of the properties of hidden defects in materials with coverings, a number of features was established for defects and coverings, differently bonded to the substructure or substrate. In particular, it should be pointed out that on a number of occasions a contact of covering with the substrate can be rigid, though the nature of the loading of the covering is such that some components of contact straining in the interaction zone of the covering with the substructure can be neglected. So, if the covering is loaded, as a rule, by forces normal to the covering standards, then in the area of the contact of the covering with the substrate, tangential straining, very accurately, can be neglected. Then you can take into consideration the boundary problem in simplified position the contact of the covering with the substrate without friction. If the covering is thin enough in thickness, then if there are significant tangential effects and in the absence of normal forces, we can consider the boundary problem under the assumption of flexible contact, that is, with neglect of normal components. The mentioned types of the boundary problems were studied in many works of authors. At the same time, in connection with the complexity, the tridimensional boundary problem for the object with rigid bonded covering has not studied before. In this setting, in the contact area of the covering with the substrate all three components of the contact straining arise, none of which can be neglected. The covering experiences a general type of the impact, as normal, and tangent. It is this type of formulation of the boundary problem for an object with covering that is considered in this article.

Keywords:

block element, factorization, topology, integral and differential factorization methods, exterior forms, block structures, boundary problems, bodies with coverings, hidden defects

Funding information

Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2017 г. проекты (9.8753.2017/БЧ, 0256-2014-0006), Программы президиума РАН 1-33П, проекты с (0256-2015-0088 по 0256-2015-0093), и при поддержке грантов РФФИ (15-01-01379, 15-08-01377, 16-41-230214, 16-41-230218, 16-48-230216, 17-08-00323).

Author info

  • Olga M. Babeshko

    д-р физ.-мат. наук, главный научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Vladimir A. Babeshko

    академик РАН, д-р физ.-мат. наук, зав. кафедрой математического моделирования Кубанского государственного университета, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета, заведующий лабораторией Южного федерального университета

  • Olga V. Evdokimova

    д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

  • Dmitriy A. Khripkov

    научный сотрудник Кубанского государственного университета

  • Elena M. Gorshkova

    канд. физ.-мат. наук, старший научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Aleksey S. Mukhin

    канд. физ.-мат. наук, старший научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

References

  1. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О скрытых дефектах в наноструктурах, телах с покрытиями и сейсмологии // ДАН. 2014. Т. 457. № 1. С. 45-49. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. O skrytykh defektakh v nanostrukturakh, telakh s pokrytiyami i seysmologii [On hidden defects in nanostructures, bodies with coatings and seismology]. Doklady Akademii nauk [Rep. of the Academy of Science], 2014. vol. 457, no 1, pp. 45-49. (In Russian)]
  2. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Топологические методы в теории скрытых дефектов и некоторые аномалии // ДАН. 2014. Т. 457. № 6. С. 650-655. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Topologicheskie metody v teorii skrytykh defektov i nekotorye anomalii [Topological methods in the theory of hidden defects and some anomalies]. Doklady Akademii nauk [Rep. of the Academy of Science], 2014, vol. 457, no. 6, pp. 650-655. (In Russian)]
  3. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О разнотипных покрытиях с дефектами в статических задачах сейсмологии и наноматериалах // ДАН. 2014. Т. 459. № 6. С. 41-45. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. O raznotipnykh pokrytiyakh s defektami v staticheskikh zadachakh seysmologii i nanomaterialakh [On various types of coatings with defects in static seismology and nanomaterials]. Doklady Akademii nauk [Rep. of the Academy of Science], 2014, vol. 459, no. 6, pp. 41-45. (In Russian)]
  4. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об особенностях скрытых дефектов в разнотипных тонкостенных покрытиях // ДАН. 2015. Т. 460. № 4. С. 403-407. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Ob osobennostyakh skrytykh defektov v raznotipnykh tonkostennykh pokrytiyakh [On the features of hidden defects in various types of thin-walled coatings]. Doklady Akademii nauk [Rep. of the Academy of Science], 2015, vol. 460, no. 4, pp. 403-407. (In Russian)]
  5. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey. Moscow, Nauka Pub., 1979, 320 p. (In Russian)]
  6. Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 256 с. [Babeshko V.A. Obobshchennyy metod faktorizatsii v prostranstvennykh dinamicheskikh smeshannykh zadachakh teorii uprugosti [Generalized factorization method in spatial dynamic mixed problems of the theory of elasticity]. Moscow, Nauka Pub., 1984, 256 p. (In Russian)]
  7. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 456 с. [Vorovich I.I., Aleksandrov V.M., Babeshko V.A. Neklassicheskie smeshannye zadachi teorii uprugosti [Nonclassical mixed problems of the theory of elasticity]. Moscow, Nauka Pub., 1974, 456 p. (In Russian)]
  8. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Внешний анализ в проблеме скрытых дефектов и прогнозе землетрясений // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 2. С. 19-28. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Vneshniy analiz v probleme skrytykh defektov i prognoze zemletryaseniy [External analysis in the problem of hidden defects and the forecast of earthquakes]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological bulletin of scientific centers of the Black Sea Economic Cooperation], 2016, no. 2, pp. 19-28. (In Russian)]

Downloads

Issue

Pages

15-21

Section

Article

Dates

Submitted

March 18, 2017

Accepted

March 22, 2017

Published

March 30, 2017

How to Cite

[1]
Babeshko, O.M., Babeshko, V.A., Evdokimova, O.V., Khripkov, D.A., Gorshkova, E.M., Mukhin, A.S., Hidden defects in coverings for harmonic and static actions and rigid contact with base. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 1, pp. 15–21.

Similar Articles

1-10 of 1069

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>