Assessment of different faults types' impact on starting earthquakes
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-15-2-30-38Abstract
The analysis of starting earthquakes preparation models by different types of stresses affecting the edges of the tectonic plates is implemented. The common characteristics of the mathematical models are analyzed. The fact of the uniformity of the factors affecting the nature of the cases causing earthquakes and the common characteristics leading to destruction of a ground and tectonic plates themselves is drawn out. It is become clear that strong starting earthquakes begin because of stresses on all the contacting components in the area where tectonic plates come together on a deformable ground of high concentrations that are characterized by singular functions. The comparison of the obtained results with the Griffiths-Irvin fractures theory leads to the conclusion that tectonic plates' edges come together form a new type of fractures. They were not described before and lead the surroundings to destruction more drastically than the Griffiths-Irvin fractures. The concentration of stresses in some sections is studied for this.
Keywords:
block element, factorization, topology, ntegral and differential factorization methods, exterior forms, block structures, boundary problems, singular peculiarityFunding information
Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2018 г., проекты (9.8753.2017/8.9), (01201354241), программ президиума РАН I-16, (00-18-21), I-52 проект (00-18-29), и при поддержке грантов РФФИ (16-41-230214), (16-41-230218), (16-48-230216), (17-08-00323), (18-08-00465), (18-01-00384), (18-05-80008).
References
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach // Acta Mechanica. 2018. Vol. 229. Iss. 5. P. 2163-2175. DOI: 10.1007/s00707-017-2092-0
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. К проблеме физико-механического предвестника стартового землетрясения: место, время, интенсивность // ДАН. 2016. Т. 466. № 6. С. 664-669. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. The Problem of Physical and Mechanical Precursors of Earthquake: Place, Time, Intensity. Doklady Physics, 2016, vol. 61, no. 2, pp. 92-97.]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О свойствах стартовых землетрясений // ДАН. 2016. Т. 467. № 5. С. 530-533. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Properties of ``Started'' Earthquake. Doklady Physics, 2016, vol. 61, no. 4, pp. 188-191.]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О стартовых землетрясениях при горизонтальных воздействиях // ДАН. 2017. Т. 474. № 4. С. 427-431. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Starting Earthquake under Horisontal Action. Doklady Physics, 2017, vol. 62, no. 6, pp. 302-305.]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М., Зарецкая М.В, Горшкова Е.М., Мухин А.С., Гладской И.Б. О стартовых землетрясениях при жестком сцеплении литосферных плит с основанием // ДАН. 2018. Т. 478. № 4. С. 406-412. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Zaretskaya, M.V., Gorshkova, E.M., Mukhin, A.S., Gladskoi, I.B. Origin of Starting Earthquakes under Complete Coupling of Lithosphere Plates and a Base. Doklady Physics, 2018, vol. 63, no. 2, pp. 70-75. DOI: 10.1134/S1028335818020015]
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. The theory of the starting earthquake // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 1. Ч. 2. С. 37-80.
- Hassani B., Hinton E. A review of homogenization and topology optimization I - homogenization theory for media with periodic structure // Computers and Structure. 1998. Vol. 69. P. 707-717.
- Xin Z.Q., Wu C.J. Topology Optimization of the Caudal Fin of the Three-Dimensional Self-Propelled Swimming Fish // Adv. Appl. Math. Mech. 2014. Vol. 6. Iss. 6. P. 732-763.
- Bendsoe M.P., Sigmund O. Topology Optimization - Theory, Methods and Applications. Berlin: Springer, 2003.
- Bonvall T., Petersson J. Topology optimization of fluids in stokes flow // Int. J.for Numerical Methods in Fluids. Vol. 42. P. 77-107.
- El-Sabbage A., Baz A. Topology optimization of unconstrained damping treatments for plates // Engineering. Optimization, 2013. Vol. 49. P. 1153-1168.
- Zheng W., Lei Y., Li S. et. al. Topology optimization of passive constrained layer damping with partial coverage on plate // J. Shock and Vibration. 2013. Vol. 20. P. 199-211.
- Van der Veen G., Langelaar M., van Keulen F. Integrated topology and controller optimization of motion systems in the frequency domain // Structural and Multidisciplinary Optimization. 2014. Vol. 51. P. 673-685.
- Dahl J.J., Jensen S., Sigmund O. Topology optimization for transient wave propagation problems in one dimension // Structural and Multidisciplinary Optimization. 2008. Vol. 36. P. 585-595.
- Blasques J.P., Stolpe M. Multy-material topology optimization of laminated composite beam cross sections // Composite Structures. 2012. Vol. 94. No. 11. P. 3278-3289.
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Бабешко О.М., Евдокимова О.В., Бабешко В.А., Горшкова Е.М., Плужник А.В., Зарецкий А.Г., Евдокимов В.С.

This work is licensed under a Creative Commons Attribution 4.0 International License.