On the comparison of Griffiths-Irwin cracks with the new type of cracks
UDC
539.3EDN
HPGDXODOI:
10.31429/vestnik-15-3-19-24Abstract
Based on the analysis of the causes of the occurrence of starting earthquakes and hidden defects, the existence of a new type of cracks, previously not described in terms of its strength properties, was revealed. In the plane problems of the theory of elasticity the Griffiths-Irwin cracks are characterized by smooth boundaries. The new type of cracks has a piecewise smooth boundary, and their shape, which is a crack in the form of a straight line segment, has been known for a long time. These cracks are less strong, since they allow a singular concentration of stresses in the medium. A way of the appearance of cracks of the new type, with which starting earthquakes are associated, is demonstrated. It is shown that with the correct choice of function spaces when solving boundary problems for the new type of cracks, they actually complement the Griffiths-Irwin cracks and make a definite contribution to the theory of strength and fracture of materials.
Keywords:
block element, cracks, topology, boundary problems methods, exterior forms, block structures, coveringsFunding information
Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки на 2018 г. (проект 9.8753.2017/8.9), ЮНЦ РАН на 2018 г. (проект 00-18-04) № госрегистрации 01201354241, программ президиума РАН П-16 (проект 00-18-21) и П-52 (проект 00-18-29) и при поддержке грантов РФФИ (проекты 16-41-230214, 16-41-230218, 16-48-230216, 17-08-00323, 18-08-00465, 18-01-00384, 18-05-80008).
References
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach // Acta Mechanica. 2018. Vol. 229. Iss. 5. P. 2163–2175. DOI: 10.1007/s00707-017-2092-0
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. On a mechanical approach to the prediction of earthquakes during horizontal motion of litospheric plates // Acta Mechanica. 2018. DOI: 10.1007/s00707-018-2255-7
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О влиянии пространственной модели литосферных плит на стартовое землетрясение // ДАН. 2018. Т. 480. № 2. С. 158–163. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. On the influence of the spatial model of lithospheric plates on the starting earthquake. Doklady Akademii nauk [Reports of Russian Academy of Sciences], 2018, vol. 480, no. 2, pp. 158–163. (In Russian)]
- Griffith A.A., Eng M. The phenomena of rupture and flow in solids // Phil. Trans. R. Soc. Lond., Ser. A. 1921. Vol. 221. P. 163–197. DOI: 10.1098/rsta.1921.0006
- Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974. 640 с. [Cherepanov, G.P. Mechanics of brittle fracture. Nauka, Moscow, 1974. (In Russian)]
- Морозов Н.Ф. Математические вопросы теории трещин. М.: Наука, 1984. 256 с. [Morozov, N.F. Mathematical problems of crack theory. Nauka, Moscow, 1984. (In Russian)]
- Sneddon I. The distributions of stresses in the neighborhood of a cracks in the elastic solid // Proc. Roy. Soc., ser. A. 1946. Vol. 187. DOI: DOI: 10.1098/rspa.1946.0077
- Александров В.М., Сметанин Б.И., Соболь Б.В. Тонкие концентраторы напряжений в упругих телах. М.: Наука, 1993. 224 с. [Aleksandrov, V.M., Smetanin, B.I., Sobol, B.V. Thin stress concentrators in elastic bodies. Nauka, Moscow, 1993. (In Russian)]
- Kirugulige M.S., Tippur H.V. Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy // Exp. Mech. 2006. Vol. 46. Iss. 2. P. 269–281. [Kirugulige, M.S., Tippur, H.V. Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp. Mech., 2006, vol. 46, iss. 2, pp. 269–281.]
- Rangarajan R., Chiaramonte M.M., Hunsweck M.J., Shen Y., Lew A.J. Simulating curvilinear crack propagation in two dimensions with universal meshes // Int. J. Numer. Meth. Engng. 2015. Vol. 102. Iss. 3–4. P. 632–670.
- Huang Y., Gao H. Intersonic crack propagation - Part II: Suddenly stopping crack // J. Appl. Mech. 2002. Vol. 69. P. 76–80.
- Morini L., Piccolroaz A. Boundary integral formulation for interfacial cracks in thermodiffusive bimaterials // Proc. R. Soc. A. 2015. Vol. 471. P. 20150284.
- Krueger R. Virtual crack closure technique: history, approach, and applications // Appl. Mech. Rev. 2004. Vol. 57. P. 109–143.
- Oneida E.K., van der Meulen M.C.H., Ingraffea A.R. Methods for Calculating G, GI and GII to Simulate Crack Growth in 2D, Multiple-Material Structures // Eng. Fract. Mech. 2015. Vol. 140. P. 106–126.
- Irwin G. Fracture dynamics // Fracture of metals, ASM, Cleveland, 1948. In: Flügge S. (ed.) Encyclopedia of Physics, Vol. IV. Springer, German, 1958. P. 551–590.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Бабешко О.М., Евдокимова О.В., Бабешко В.А., Хрипков Д.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.