Riemann vector equation in the problem of strength of the set of tunnels
UDC
539.3EDN
YUKAWRDOI:
10.31429/vestnik-15-1-24-28Abstract
The study of factors affecting the strength properties of changing underground structures is performed, but for various reasons this study is small. The set of parallel underground structures considered as a block structure consisting of the upper linearly elastic layer and the formation modeled by Kirchhoff plate is being examined. The stratum containing the extracted minerals lies on the layers, which environment mechanical characteristics are soil-like and allow you to model it asWinkler’s bed. It is assumed that the thickness of the reservoir is much smaller than the thickness of the upper layer, which takes place in the real conditions of extraction of many minerals. In contrast to the approaches made in the works of various authors, in this paper, despite the presence of multiplicity of galleries, a method is created to describe the behavior of parameters of each tunnel. This is achieved by reducing the problem to the vector Riemann boundary value problem, for which a factorization method is being developed.
Keywords:
stress-strain state, drifts, deformable layers, Kirchhoff plates, block elements, integral and functional equations, boundary value problemsFunding information
Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки на 2018 г., проекты (9.8753.2017/БЧ), ЮНЦ РАН на 2018 г., № госрег. проекта 01201354241, программ президиума РАН П-16, проект (0256-2018-0015), П-52 проект (0256-2018-0020), и при поддержке грантов РФФИ (16-41-230214), (16-41-230218), (16-48-230216), (17-08-00323), (18-08-00465), (18-01-00384).
References
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. К теории влияния глобального фактора на прочность совокупности параллельных соединений // Вычислительная механика сплошных сред. 2016. Т. 9. №4. С. 412-419. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. To the theory of global influence factor on the strength of a set of parallel connections. Computational Mechanics of Continuous Media, 2016, vol. 9, no. 4, pp. 412-419. (In Russian)]
- Бабешко В.А., Бабешко О.М., Евдокимова О.В, Федоренко А.Г., Шестопалов В.Л. К проблеме покрытий с трещинами в наноматериалах и сейсмологии // МТТ. 2013. №5. С. 39-45. [Babeshko, V.A., Babeshko, O.M., Evdokimova, O.V., Fedorenko, A.G., Shestopalov, V.L. To the problem of coatings with cracks in nanomaterials and seismology. Mechanics of solids, 2013, no. 5, pp. 39-45. (In Russian)]
- Евдокимова О.М., Бабешко О.М., Бабешко В.А. Метод интегрального уравнения в теории слоев с множественными полостями и штольнями // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. №4. С. 29-38. [Evdokimova, O.M., Babeshko, O.M., Babeshko, V.A. The method of the integral equation in the theory of layers with multiple cavities and galleries. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 4, pp. 29-38. (In Russian)]
- Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 256 с. [Babeshko, V.A. The generalized method of factorization in spatial dynamic mixed problems of the theory of elasticity. Nauka, Moscow, 1984. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Евдокимова О.В., Бабешко О.М., Бабешко В.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.