Riemann vector equation in the problem of strength of the set of tunnels

Authors

  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

EDN

YUKAWR

DOI:

10.31429/vestnik-15-1-24-28

Abstract

The study of factors affecting the strength properties of changing underground structures is performed, but for various reasons this study is small. The set of parallel underground structures considered as a block structure consisting of the upper linearly elastic layer and the formation modeled by Kirchhoff plate is being examined. The stratum containing the extracted minerals lies on the layers, which environment mechanical characteristics are soil-like and allow you to model it asWinkler’s bed. It is assumed that the thickness of the reservoir is much smaller than the thickness of the upper layer, which takes place in the real conditions of extraction of many minerals. In contrast to the approaches made in the works of various authors, in this paper, despite the presence of multiplicity of galleries, a method is created to describe the behavior of parameters of each tunnel. This is achieved by reducing the problem to the vector Riemann boundary value problem, for which a factorization method is being developed.

Keywords:

stress-strain state, drifts, deformable layers, Kirchhoff plates, block elements, integral and functional equations, boundary value problems

Funding information

Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки на 2018 г., проекты (9.8753.2017/БЧ), ЮНЦ РАН на 2018 г., № госрег. проекта 01201354241, программ президиума РАН П-16, проект (0256-2018-0015), П-52 проект (0256-2018-0020), и при поддержке грантов РФФИ (16-41-230214), (16-41-230218), (16-48-230216), (17-08-00323), (18-08-00465), (18-01-00384).

Authors info

  • Olga V. Evdokimova

    д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

  • Olga M. Babeshko

    д-р физ.-мат. наук, главный научный сотрудник Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Vladimir A. Babeshko

    академик РАН, д-р физ.-мат. наук, зав. кафедрой математического моделирования Кубанского государственного университета, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета, заведующий лабораторией Южного федерального университета

References

  1. Бабешко В.А., Евдокимова О.В., Бабешко О.М. К теории влияния глобального фактора на прочность совокупности параллельных соединений // Вычислительная механика сплошных сред. 2016. Т. 9. №4. С. 412-419. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. To the theory of global influence factor on the strength of a set of parallel connections. Computational Mechanics of Continuous Media, 2016, vol. 9, no. 4, pp. 412-419. (In Russian)]
  2. Бабешко В.А., Бабешко О.М., Евдокимова О.В, Федоренко А.Г., Шестопалов В.Л. К проблеме покрытий с трещинами в наноматериалах и сейсмологии // МТТ. 2013. №5. С. 39-45. [Babeshko, V.A., Babeshko, O.M., Evdokimova, O.V., Fedorenko, A.G., Shestopalov, V.L. To the problem of coatings with cracks in nanomaterials and seismology. Mechanics of solids, 2013, no. 5, pp. 39-45. (In Russian)]
  3. Евдокимова О.М., Бабешко О.М., Бабешко В.А. Метод интегрального уравнения в теории слоев с множественными полостями и штольнями // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. №4. С. 29-38. [Evdokimova, O.M., Babeshko, O.M., Babeshko, V.A. The method of the integral equation in the theory of layers with multiple cavities and galleries. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 4, pp. 29-38. (In Russian)]
  4. Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 256 с. [Babeshko, V.A. The generalized method of factorization in spatial dynamic mixed problems of the theory of elasticity. Nauka, Moscow, 1984. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

24-28

Section

Mechanics

Dates

Submitted

March 11, 2018

Accepted

March 16, 2018

Published

March 19, 2018

How to Cite

[1]
Evdokimova, O.V., Babeshko, O.M., Babeshko, V.A., Riemann vector equation in the problem of strength of the set of tunnels. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 1, pp. 24–28. DOI: 10.31429/vestnik-15-1-24-28

Similar Articles

1-10 of 1092

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>