About a starting earthquake by harmonic actions in the space case
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-15-2-24-29Abstract
The object of study is the behavior of two semi-infinite tectonic plates under vibration conditions located on a deformable ground in the form a deformable layer. It is taken to be that the plates have parallel vertical boundaries and two positions on the layer -- when there is some distance between their edges and when there is not. An antiplane boundary problem is studied on the assumption that the edges of the tectonic plates act harmonically in time with the same frequency of stress, parallel to one of the coordinate axes. The boundary problem stated for a triblock structure is studied by the block element method, the algorithm of which requires the implementing of exterior form operations, exterior analysis, and the creating of the quotient topology for the block structure. The problem reduces to studying functional equations the solutions of which are the contact stresses. The concentrations of contact stresses which show the probability of a starting earthquake when the tectonic plates come together are studied.
Keywords:
block element, factorization, topology, integral and differential factorization methods, exterior forms, block structures, boundary problems, singular peculiarityFunding information
Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2018~г., проекты (9.8753.2017/8.9), (01201354241), программ президиума РАН I-16, (00-18-21), I-52 проект (00-18-29), и при поддержке грантов РФФИ (16-41-230214), (16-41-230218), (16-48-230216), (17-08-00323), (18-08-00465), (18-01-00384), (18-05-80008).
References
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О влиянии пространственной модели литосферных плит на стартовое землетрясение // ДАН. 2018. Т. 480. № 2. С. 158-163. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. On the influence of the spatial model of lithospheric plates on the initial earthquake. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2018, vol. 480, no. 2, pp. 158-163. (In Russian)]
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach // Acta Mechanica. 2018. Vol. 229. Iss. 5. P. 2163-2175. DOI: 10.1007/s00707-017-2092-0
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. The Theory of the Starting Earthquake // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. №1. Ч. 2. С. 37-80.
- Бабешко В.А, Евлокимова О.В., Бабешко О.М. Сложение упакованных блочных элементов и их гомеоморфизмы // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. № 2. С. 32-35. [Babeshko, V.A., Evlokimova, O.V., Babeshko, O.M. Addition of packaged block elements and their homeomorphisms. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 32-35. (In Russian)]
- Бабешко В.А,. Бабешко О.М., Евдокимова О.В. О слоистых упругих средах с рельефной границей // Известия РАН. Прикладная математика и механика. 2010. №6. С. 890-894. [Babeshko, V.A., Babeshko, O.M., Evdokimova, O.V. On layered elastic media with relief boundary. Proc. of the Russian Academy of Sciences. Applied mathematics and mechanics, 2010, no. 6, pp. 890-894. (In Russian)]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с. [Vorovich, I.I., Babeshko, V.A. Dynamic mixed problems of the theory of elasticity for nonclassical domains, Nauka, Moscow, 1979. (In Russian)]
- Hassani B., Hinton E. A review of homogenization and topology optimization I - homogenization theory for media with periodic structure // Computers and Structure, 1998. Vol. 69. P. 707-717.
- Xin Z.Q., Wu C.J. Topology Optimization of the Caudal Fin of the Three-Dimensional Self-Propelled Swimming Fish // Adv. Appl. Math. Mech. 2014. Vol. 6. Iss. 6. P. 732-763.
- Bendsoe M.P., Sigmund O. Topology Optimization - Theory, Methods and Applications. Berlin: Springer, 2003.
- Bonvall T., Petersson J. Topology optimization of fluids in stokes flow // International Journal for Numerical Methods in Fluids. Vol. 42. P. 77-107.
- El-Sabbage A., Baz A. Topology optimization of unconstrained damping treatments for plates // Engineering. Optimization, 2013. Vol. 49. P. 1153-1168.
- Zheng W., Lei Y., Li S. et. al. Topology optimization of passive constrained layer damping with partial coverage on plate // J. Shock and Vibration. 2013. Vol. 20. P. 199-211.
- Van der Veen G., Langelaar M., van Keulen F. Integrated topology and controller optimization of motion systems in the frequency domain // Structural and Multidisciplinary Optimization. 2014. Vol. 51. P. 673-685.
- Dahl J.J., Jensen S., Sigmund O. Topology optimization for transient wave propagation problems in one dimension // Structural and Multidisciplinary Optimization. 2008. Vol. 36. P. 585-595.
- Blasques J.P., Stolpe M. Multy-material topology optimization of laminated composite beam cross sections // Composite Structures. 2012. Vol. 94. No. 11. P. 3278-3289.
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Бабешко В.А., Евдокимова О.В., Бабешко О.М., Хрипков Д.А., Лозовой В.В., Уафа С.Б., Евдокимов В.С., Елецкий Ю.Б.

This work is licensed under a Creative Commons Attribution 4.0 International License.