About the group properties of block elements in nanotechnology
UDC
539.3EDN
DPPFMDDOI:
10.31429/vestnik-22-1-14-17Abstract
In this paper, it is shown that the packed block elements used in solving the boundary value problem by the block element method are elements of an Abelian group. It was proved earlier in publications that they are elements of a discrete topological space. This result expands the apparatus of studying aggregates of block elements, in particular, the construction of group ideals and the implementation of harmonic analysis on groups. This property can play an important role in the problem of modeling the creation of nanomaterials.
Keywords:
block elements, Abelian group, внешние формыFunding information
The work was carried out with the financial support of the Russian Science Foundation and the Kuban Science Foundation (regional project 24-11-20006).
References
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Топологический метод решения граничных задач и блочные элементы. ДАН, 2013, т. 449, № 4, С. 657–660. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Topological method of solving boundary-value problem and block elements. Doklady Akademii nauk = Doklady Physics, 2013, vol. 58, no. 4, pp. 152–155. (in Russian)]
- Бабешко, В.А., Ритцер, Д., Евдокимова, О.В., Бабешко, О.М., Федоренко, А.Г., К теории прогноза сейсмичности на основе механической концепции, топологический подход. ДАН, 2013, т. 450, № 2, с. 166–170. [Babeshko, V.A., Ritzer, D., Evdokimova, O.V., Babeshko, O.M., Fedorenko, A.G., Topological approach to the theory of prognosis of seismicity based on a mechanical conception. Doklady Akademii nauk = Doklady Physics, 2013, vol. 58, no. 5, pp. 181–185. (in Russian)]
- Бабешко, В.А., Бабешко, О.М., Евдокимова, О.В., Трещины нового типа и модели некоторых наноматериалов. Известия РАН. Механика твердого тела, 2020, № 5, с. 13–20. [Babeshko, V.A., Babeshko O.M., Evdokimova O.V., New type cracks and models of some nanomaterials. Izvestiya RAN. Mekhanika tverdogo tela = News of the Russian Academy of Sciences. Solid state mechanics, 2020, no. 5, pp. 13–20. (in Russian)] DOI: 10.31857/S0572329920050025 EDN: XFDTSE
- Зорич, В.А., Математический анализ. Часть 2. Москва, МЦНМО, 2002. [Zorich, V.A., Matematicheskiy analiz. Chast' 2 = Mathematical analysis. Part 2. Moscow, ICNMO, 2002. (in Russian)]
- Келли, Д., Общая топология. Москва, Наука, 1968. [Kelly, D., Obshchaya topologiya = General topology. Moscow, Nauka, 1968. (in Russian)]
- Мищенко, А.С., Фоменко, А.Т., Краткий курс дифференциальной геометрии и топологии. Москва, Физматлит, 2004. [Mishchenko, A.S., Fomenko, A.T., Kratkiy kurs differentsial'noy geometrii i topologii = A short course in differential geometry and topology. Moscow, Fizmatlit, 2004. (in Russian)]
- Голованов, Н.Н., Ильютко, Д.П., Носовский, Г.В., Фоменко, А.Т., Компьютерная геометрия. Москва, Академия, 2006. [Golovanov, N.N., Ilyutko, D.P., Nosovsky, G.V., Fomenko, A.T., Komp'yuternaya geometriya = Computer geometry. Moscow, Akademiya, 2006. (in Russian)]
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Бушуева, О.А., Топологическая дискретизация решений граничных задач механики сплошной среды. Экологический вестник научных центров Черноморского экономического сотрудничества, 2020, т. 16, № 3, с. 65–71. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Bushueva, O.A. Topological discretization of solutions to boundary value problems in continuum mechanics. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of the scientific centers of the Black Sea Economic Cooperation, 2020, vol. 16, no. 3, pp. 65–71. (in Russian)] DOI: 10.31429/vestnik-17-3-65-71 EDN: LVFVAE
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Бабешко В.А., Журавков М.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.